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Abstract

In this article, we present an alternate proof of a vanishing result of étale cohomology
on perfectoid rings due to Česnavičius and more recently proved by a different approach by
Bhatt and Scholze. To establish that, we prove a tilting equivalence of étale cohomology of
perfectoid rings taking values in commutative, finite étale group schemes. On the way, we
algebraically establish an analogue of the tilting correspondences of Scholze, between the
category of finite étale schemes over a perfectoid ring and that over its tilt, without using
tools from almost ring theory or adic spaces.

Contents
1 Introduction 1

2 $-complete Arc (hyper)sheaves fet and RΓét(−,G) 3

3 Tilting for fet and RΓét(−,G) over Perfectoid Rings 6

1 Introduction
Our goal in this article is to simplify the proof of the following result of Česnavičius. This
theorem plays a central role in the proof of the purity of the Brauer group, notably by
demonstrating that the p-primary torsion part of the Brauer group H2

ét(A[ 1
p ],Gm)[p∞] for a

perfectoid ring A vanishes.

Theorem 1.1 ([Čes19, Thm. 4.10], cf. [BS19, Thm. 11.1], see Corollary 3.8). Let p be a
prime and let A be a Zp-algebra such that it is a perfectoid ring with an element $ ∈ A
such that $p | p and that A is $-adically complete. Then, for a commutative, finite étale
A[ 1

$ ]-group scheme G of p-power order, we have, for all i ≥ 2,

Hi
ét(A[ 1

$ ], G) = 0.

We follow the definition of a perfectoid ring from [BMS18] (see Definition 3.1). We remark
that H1

ét(A[ 1
$ ], G) can be computed using the prismatic Dieudonné module of G (see [ČS21,

Thm. 4.1.8]). The statement of Theorem 1.1 is a mild generalisation of [Čes19, Thm. 4.10].
Indeed, the beginning of §2 implies that we can find π ∈ A such that A is π-adically complete
and that πp = p; consequently, A[ 1

π ] = A[ 1
p ] and for all i ≥ 2,

Hi
ét(A[ 1

p ], G) = 0.
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This slight improvement is possible since our results do not depend on the almost purity
theorem of [KL15]. The proof given in [Čes19] uses a non-noetherian version of a result of
Huber from [Hub96] to compare the étale cohomology of A[ 1

p ] with coefficients in G with
the étale cohomology of the associated adic space Spa(A[ 1

p ], A) with coefficients in the group
associated to G, thus transferring the problem to the world of perfectoid spaces studied by
Scholze in [Sch12] and Kedlaya and Liu in [KL15]. In this article, we propose a proof of
Theorem 1.1 by using a similar strategy inspired from the work of Česnavičius and Scholze in
[ČS21], by replacing the almost purity theorem with ‘algebraic’ tilting results from op. cit. By
bootstrapping from the arguments in [ČS21, Thm. 2.2.7], we deduce a non-constant coefficient
version of the tilting result of étale cohomology of perfectoid rings (see Theorem 1.3). The
details of the proof of Theorem 1.1 using this non-constant coefficient version of the tilting
result are given in Corollary 3.8.

Theorem 1.1 is obtained as a consequence of the isomorphism (Theorem 1.3) between
the étale cohomology group appearing in Theorem 1.1 and the étale cohomology group of
the corresponding perfect Fp-algebra ‘tilt’ taking values in a commutative, finite étale group
scheme G[ of p-power order. Indeed, we may apply the vanishing of the étale cohomology
of the Fp-algebra. More precisely, by [SGA4 III, Ex. X Thm. 5.1], the p-cohomological
dimension of an affine noetherian Fp-algebra is ≤ 1, and consequently, by limit arguments,
the étale cohomology of degree i ≥ 2 of any commutative, finite étale group scheme of
p-power order over an Fp-algebra vanishes. The existence of the ‘tilt’ G[ of G will be shown
by applying Theorem 1.2, which can be seen as an algebraic analogue of tilting results on
perfectoid Banach K-algebras over a perfectoid field K as in [Sch12] or that on perfectoid
Banach Qp-algebras as in [KL15].

Theorem 1.2. Let A/Zp be a perfectoid ring with an element $ ∈ A such that $p | p and
that A is $-adically complete, and let A[ be its tilt and $[ ∈ A[ be such that $[] is a unit
multiple of $ in A. Then, there is an equivalence, functorial in A, between the categories of
finite étale algebras

fet /A[ 1
$ ] ∼= fet /A[[ 1

$[ ]. (∗)

For a ring R, the notion of a (co-commutative) Hopf R-algebra is dual to the notion of a
(commutative) affine R-group scheme, i.e., they are R-algebras so that their spectra have
the structure of (commutative) affine R-group schemes. Starting with a commutative, finite
étale group A[ 1

$ ]-scheme G, we observe that, by (∗), its coordinate ring O(G), which is a
co-commutative, finite étale Hopf A[ 1

$ ]-algebra, has a tilt O(G)[, which a priori is a finite
étale A[[ 1

$[ ]-algebra. However, the structure of a (co-commutative) Hopf algebra, expressible
in terms of diagrams involving A[ 1

$ ], O(G) and O(G) ⊗A O(G), gets transferred by (∗)
to O(G)[, whence we get the the required commutative, finite étale A[[ 1

$[ ]-group scheme
G[ := SpecO(G)[, as shown in the following theorem.

Theorem 1.3 (see Theorem 3.6). We assume notations of Theorem 1.2. For commutative
group schemes G ∈ fet /A[ 1

$ ] and G[ ∈ fet /A[[ 1
$[ ] that are identified under the tilting

correspondence (∗), we have an identification, functorial in A and G,

RΓét(A[ 1
$ ], G) ∼= RΓét(A

[[ 1
$[ ], G[). (∗∗)

We have the following corollary to Theorem 1.2.

Corollary 1.4. Let R be a perfectoid Banach K-algebra as in [Sch12, Defn. 5.1], where
K is a perfectoid field (resp. a perfectoid Banach Qp-algebra as in [KL15, Defn. 3.6.1]).
Choose an element $ ∈ R◦ such that $p | p and that R◦ is $-adically complete, and choose
$[ ∈ R◦[ such that ($[]) = ($). Then, there is a functorial in R equivalence of categories,

fet /R◦[ 1
$ ] ∼= fet /R[◦[ 1

$[ ].

A key ingredient in the proof of Theorem 1.3 is the theory of the arc topology (Defini-
tion 2.5) developed by Bhatt and Mathew in [BM21]. As shown by them, the cohomology
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of an étale sheaf of torsion abelian groups satisfies (hyper)descent in the arc topology (see
Definition 2.3 for the definition of hyperdescent and Proposition 2.7 for a precise statement).
Moreover, they proved that, given an étale sheaf G of torsion abelian groups, the functor
R′ 7→ RΓét(R̂′[

1
$ ],G) satisfies $-complete arc hyperdescent (the $-complete arc topology

defined in Definition 2.9 is a slight refinement of the arc topology and is better suited to the
study of perfectoid rings). This result (Proposition 2.12) and the fact that any perfectoid ring
has a $-complete arc hypercover given by a special class of perfectoid rings (see Lemma 3.3)
reduces the proof to showing the equivalence for this special class of perfectoid rings, where
it is possible to give a direct proof. It must be remarked, however, that except for the
aforementioned class of special perfectoid rings, we do not know any direct morphism that
establishes an identification (∗∗). This failure is related to the fact that the ‘tilting functor’
(cf. Proposition 3.2), which localises in the analytic topology in the adic case, does not localise
in the Zariski topology in the algebraic case.

Notations and Conventions
We fix a prime integer p. The term rank shall denote the Krull dimension of a valuation
ring. Given a ring A with an element $ ∈ A and an n ≥ 1, we define A〈$n〉 to be the
kernel of multiplication by $n map in A; these kernels form an increasing system with union
A〈$∞〉. Given a ring R, the category of schemes over R will be denoted by SchR and its
subcategory of quasi-compact and quasi-separated R-schemes will be denoted by Schqcqs

R .
Given a simplicial object X• we shall denote the n-th component by Xn and the n-truncation
of the object by X≤n. For any category C and an object X ∈ C , the slice category over X
will be denoted by C /X. The 2-category of small 1-categories will be denoted Cat.
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2 $-complete Arc (hyper)sheaves fet and RΓét(−,G)

Our goal of this section is to deduce Proposition 2.12 from Proposition 2.7 (following [BM21]).
It is essential in this article to use ∞-categorical tools, and therefore, we refer the reader to
[HTT].

Definition 2.1 ([Sta20, Tag 049J]). For a ring R and an ∞-category C with all colimits,
we say that a functor F : Schop

R → C is locally of finite presentation (‘finitary’ in [BM21]), if
whenever {Sα, fαβ}α,β∈I is an inverse system of quasi-compact and quasi-separated R-schemes
indexed by a cofiltered partially ordered set I, such that the transition map fαβ : Sα → Sβ
is affine for each α, β ∈ I, the map colimα (F(Sα))

∼−→ F(limα Sα) is an equivalence in C .

Definition 2.2 ([Sta20, Tag 01G5], [HTT, Defn. 6.5.3.2]). Given a category X with finite
limits, an element X ∈X , and a Grothendieck topology τ on X , a simplicial object X• in
X /X is a hypercover of X if

1. the morphism X0 → X is a τ -covering, and
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2. for every n ≥ 1, the morphism Xn → (coskn(skn−1(X•)))n is a τ -cover.

For example, given a τ -cover Y → X, we have the Čech nerve hypercover

(· · · Y ×X Y Y ) of X.

Definition 2.3 (cf. [HTT, §6.5.2]). Given a ring R, a Grothendieck topology τ on SchR,
and an ∞-category C with all limits, a functor F : Schop

R → C is said to be a τ -sheaf or to
satisfy τ -descent, if F carries arbitrary coproducts of schemes to products in C and for every
τ -cover Y → X, the map

F(X) lim(F(Y ) F(Y ×X Y ) · · · ) is an equivalence.∼

A τ -sheaf F is said to be a τ -hypersheaf or to satisfy τ -hyperdescent, if for every hypercover

X• := (· · · −→−→−→ X1
−→−→ X0) of X in the τ -topology, the map

F(X) lim(F(X0) F(X1) · · · ) is an equivalence.∼

Given an ∞-category C and two objects C,D ∈ C , [HTT, Defn. 1.2.2.1] associates a
Kan complex MapC (C,D), called the ‘mapping space’ from C to D. This is a generalisation
of the set of morphisms from C to D in an 1-category, obtained by admitting homotopies
between morphisms. For n ≥ −1, an object C ∈ C is said to be n-truncated if MapC (D,C)
is n-truncated, for all objects D ∈ C (see [HTT, Defn. 5.5.6.1]), i.e., if for all k > n the
homotopy groups πk(MapC (D,C)) vanish; dually C is n-cotruncated (resp., cotruncated) if
it is n-truncated (resp., m-cotruncated for some m ≥ −1) in C op. A cocomplete ∞-category
C is said to be generated under colimits by cotruncated objects if any compact object in
C is cotruncated and any object C ∈ C can be written as a colimit of compact objects
(cf. [EHIK21, Defn. 3.1.4]). This automatically guarantees that the class of compact objects
forms a set. Examples include ‘nice’ cocomplete n-categories (in which every object is n-
truncated), where ‘nice’ refers to some set theoretic finiteness condition to make the category
small enough, and the derived ∞-category D(Z)≥0 of bounded below by 0 complexes of
abelian groups (in which the perfect complexes form the set cotruncated objects by [HA,
Warning 1.2.1.9] and [Sta20, Tag 07VI]; also cf. [BM21, Eg. 3.6(1)]).

Proposition 2.4 ([EHIK21, Lem. 3.1.7]). For a ring R, a Grothendieck topology τ on
SchR, and an ∞-category C generated under colimits by cotruncated objects, any sheaf
F : Schop

R → C is automatically a hypersheaf.

Following notations of op. cit., we denote the ∞-category of Kan complexes as S and for
each n ≥ −1, its full ∞-subcategory of n-truncated Kan complexes as S≤n. In loc. cit. the
source of F is assumed to be an ‘∞-topos’, however, the same proof works in the case of an
ordinary Grothendieck site, which is sufficient for our purposes. We now present a sketch of
the proof of Proposition 2.4 following arguments from op. cit. and [HTT].

Proof. The property of a sheaf (or a hypersheaf) can be tested by applying the Yoneda emed-
ding; whence, since C is generated under colimits by cotruncated objects, F has the property
if and only if for every cotruncated object C ∈ C , the functor MapC (C,F(−)) : Schop

R → S≤n
has the same property. The latter is a truncated object in the category of sheaves on SchR
taking values in S, and therefore, by [HTT, Lem. 6.5.2.9], it is a hypersheaf.

We have inherently used [HTT, Cor. 6.5.3.13], which shows that the notion of a hypersheaf
coincides with the notion of ‘hypercompleteness’ (see [HTT, §6.5.2] for the definition).

The following topology was defined by Bhatt and Mathew in [BM21], where they proved
that the étale cohomology satisfies arc descent (see Proposition 2.7).

Definition 2.5 ([BM21, Defn. 1.2]). A morphism X ′ → X of schemes is an arc cover if for
every rank ≤ 1 valuation ring V and every morphism SpecV → X, there are a faithfully flat
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extension V → V ′ of valuation rings and a morphism SpecV ′ → X ′ that lifts the composition
SpecV ′ → SpecV → X to a commutative square

SpecV ′ X ′

SpecV X.

(2A)

If we remove the rank ≤ 1 hypothesis from Definition 2.5 and consider any valuation ring
V , we obtain the v-topology of [BM21, Defn. 1.1] or the ‘universally subtrusive topology’ of
[Ryd10, Defn. 2.2]. The ‘universally submersive topology’ of [Ryd10, pg. 187] is contained in
between the arc and the v-topology ([HS21]). In the proof of the following we shall need
to use a result [Ryd10, Thm. 3.12 and Rem. 3.13] of Rydh which says that any finitely
presented v-cover of schemes has a refinement given by a composition of a Zariski open
covering and a proper surjective morphism of finite presentation, and therefore, a Zariski sheaf
locally of finite presentation that takes values in an ∞-category generated under colimits
by cotruncated objects and which satisfies descent for proper surjective morphisms of finite
presentation is a v-sheaf.
Remark 2.6. Although the arc topology (Definition 2.5) is defined for all schemes, for all the
rest we shall specialise to quasi-compact and quasi-separated schemes.

Proposition 2.7 ([BM21, Thm. 5.6(2), Thm. 5.4]). Given a ring R, the functor fet that
associates to a quasi-compact and quasi-separated R-scheme X the category of finite étale X-
schemes satisfies arc hyperdescent; moreover, the functor given by X 7→ RΓét(X,G) satisfies
arc hyperdescent.

We need the following lemma to prove the above proposition.

Lemma 2.8 ([Sta20, Tag 09ZL], [Gab94, Thm. 1]). Given a ring A with an ideal I ⊂ A
such that A is I-henselian, there is an equivalence fet /A

∼−→ fet /(A/I); moreover, given an
étale sheaf G on A of torsion abelian groups, the morphism RΓét(A,G)

∼−→ RΓét(A/I,G) is
an isomorphism

Proof of Proposition 2.7. This proof is the same as the proofs in [BM21]. We shall prove
that fet satisfies arc descent, since then it automatically satisfies arc hyperdescent by Proposi-
tion 2.4. Indeed, C can taken to be the essentially small 2-category generated under colimits
by the categories of finite étale X-schemes, where X is a finite type R-scheme.

By [BM21, Thm. 4.1], since fet is locally of finite presentation, it is enough to prove that
fet is a v-sheaf, and that for any valuation ring with an algebraically closed fraction field and
any prime ideal p ⊂ V , the square

fet /V fet /(V/p)

fet /Vp fet /κ(p)

(2B)

is cartesian. Indeed, (2B) is cartesian because each ring among V/p, Vp and κ(p) is a valuation
ring with an algebraically closed fraction field, implying that each is a strictly henselian local
ring. Since V → V/p is a morphism between henselian local rings with the same residue field,
the top horizontal morphism is an identification by Lemma 2.8, and similarly, the bottom
horizontal morphism is an isomorphism.

Thus, it reduces to prove that fet is a v-sheaf: by [Ryd10, Thm. 3.12 and Rem. 3.13], it
suffices to show that it satisfies descent for proper surjective morphisms of finite presentation,
which follows from [SGA1, Exp. IX Thm. 4.12].

The proof for the second functor has the same structure as the proof for the first. The
proper base change theorem [SGA4 III, Exp. XII Thm. 5.1] and [BM21, Lem. 5.1] show that
the functor satisfies descent for proper surjective morphisms of finite presentation (see the
proof of [BM21, Thm. 5.4] for details), and hence, by [Ryd10, Thm. 3.12 and Rem. 3.13],
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it satisfies v-descent. The square analogous to (2B) is cartesian because the horizontal
morphisms are isomorphism by Lemma 2.8; the lemma being applicable as the corresponding
horizontal morphisms are between henselian rings with the same residue fields. The result
[Sta20, Tag 09YQ] proves that the functor is locally of finite presentation, consequently, the
functor is an arc sheaf thanks to [BM21, Thm. 4.1], and finally by Proposition 2.4, where we
take C = D(Z)≥0, an arc hypersheaf.

Definition 2.9 ([BM21, Defn. 6.14], [ČS21, §2.2.1]). Given a ring A with an element $ ∈ A,
a morphism A→ A′ of rings is a $-complete arc cover if for any rank ≤ 1 and $-adically
complete valuation ring V and any morphism A→ V , there are a faithfully flat extension
V → V ′ of valuation rings and a morphism SpecV ′ → X ′ := SpecA′ lifting the composition
SpecV ′ → SpecV → X := SpecA to a commutative square as in (2A).

Remark 2.10. For a ring A, an element $ ∈ A, and a $-complete arc cover A → A′, the
reduction A/$ → A′/$ is an arc cover. Conversely, an arc cover A→ A′ is a $-complete
arc cover (see [Sta20, Tag 090T]).
Remark 2.11. Given a ring A with an element $ ∈ A such that A is $-adically complete,
the functor fet on the category of $-adically complete A-algebras taking such an A-algebra
A′ to the category of finite étale A′-algebras is a $-complete arc sheaf by Remark 2.10 and
Lemma 2.8 (and hence a $-complete arc hypersheaf by Proposition 2.4), similarly, given
an étale sheaf G on A of torsion abelian groups, the functor A′ 7→ RΓét(A

′,G) on the same
category is a $-complete arc hypersheaf.

Proposition 2.12 (cf. [Mat20, Thm. 5.19], [BM21, Cor. 6.17]). Given a ring R with an
element $ ∈ R, the functor taking an R-algebra R′, with $-adic completion R̂′, to the
category of finite étale R̂′[ 1

$ ]-algebras satisfies $-complete arc hyperdescent. Moreover, given
an étale sheaf G on R of torsion abelian groups, the functor R′ 7→ RΓét(R̂′[

1
$ ],G) satisfies

$-complete arc hyperdescent.

See [Mat20, Thm. 5.19] for the case of finite étale algebras and [BM21, Cor. 6.17] for the
case of the étale cohomology. In either case, it reduces to prove arc descent for the respective
functors. Notably, the case of the étale cohomology is easier, given that there is a cartesian
square

RΓét(R,G) RΓét(R[ 1
$ ],G)

RΓét(R̂,G) RΓét(R̂[ 1
$ ],G),

(2C)

which, since D(Z)≥0 is a stable∞-category ([HA, Defn. 1.1.1.9]), is a co-cartesian square (see
[HA, Prop. 1.1.3.4]). Consequently, it suffices to show that each of the other three functors
appearing in (2C) are arc sheaves, which follows from Proposition 2.7 and Lemma 2.8. But
in the case of finite étale schemes, loc. cit. does not apply and thus, the above proof can not
be naively adapted to work.

3 Tilting for fet and RΓét(−,G) over Perfectoid Rings

In the first part of §3 we recall the basics of tilting of perfectoid rings (following [ČS21])
which form the base of the proof of Theorem 3.6. As a corollary, we have the generalisation
of [Čes19, Thm. 4.10] stated in Corollary 3.8.

Given a Zp-algebra A, we define the tilt A[ := limx 7→xp A/(p). Given a ring A and an
element $ ∈ A such that $ | p and A is $-adically complete, [BMS18, Lem. 3.2(i)] implies
that there is a multiplicative monoidal isomorphism

limx 7→xp A
∼−→ A[. (3A)
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The untilt morphism is the projection onto the first factor ] : A[ → A. It can be written
as a composition of the Teichmüller map a 7→ [a] and the canonical morphism θ from the
p-typical Witt vectors of A[ to A defined by [a] 7→ a].

Definition 3.1 ([BMS18, Defn. 3.5]). A ring A with tilt A[ is called perfectoid (also referred
to as ‘integral perfectoid’ by some authors) if there exists a $ ∈ A such that $p | p and such
that A is $-adically complete and

1. the p-power morphism x 7→ xp in A/($)→ A/($p) is surjective, and

2. the kernel of the map θ : W (A[)→ A (defined above) is principal.

Any perfect Fp-algebra is perfectoid because we may take $ = 0.
Let A be a perfectoid ring with an element $ ∈ A such that $p | p and that A is

$-adically complete. We recall from [ČS21, §2.1.3] that A has bounded $-torsion; more
precisely, we have A〈$〉 = A〈$∞〉. Additionally, by [BMS18, Lem. 3.9], there exists a
unit u ∈ A such that the element u$ admits compatible p-power roots in A, that is, there
exists an element $[ with untilt u$. Then, by the proof of [BMS18, Lem. 3.10], there is an
isomorphism

A/($) ∼= A[/($[). (3B)

Moreover, since A[ is perfect, arguing as in the proof of [Bha17, Cor. 3.2.3], the above
isomorphism implies that A[ is $[-adically complete. The isomorphism (3A) of multiplicative
monoids extends (thanks to [ČS21, §2.1.7]) to an isomorphism

A[[ 1
$[ ]

∼−→ limx 7→xp A[ 1
$ ]. (3C)

Proposition 3.2 ([ČS21, Prop. 2.1.9]). Given a perfectoid ring A and an element $ ∈ A
such that $p | p and that A is $-adically complete, and its tilt A[ with an element $[ ∈ A[
such that $[] is a unit multiple of $ in A; we have an equivalence between the categories
of $-adically complete A-algebras which are valuation rings of rank ≤ 1 with algebraically
closed fraction fields and the category of $[-adically complete A[-algebras which are valuation
rings of rank ≤ 1 with algebraically closed fraction fields.

In fact, op. cit. proves a stronger result, by showing an equivalence between the categories
of $-adically complete perfectoid rings over A and that of $[-adically complete perfect rings
over A[ (cf. [Sch12, Thm. 5.2] and [KL15, Thm. 3.6.5]). It is to be noted, however, for the
sake of clarity, that $-adically complete valuation rings over A of rank ≤ 1 with algebraically
closed fraction fields are perfectoid rings (resp., valuation rings of rank ≤ 1 with algebraically
closed fraction fields of characteristic p are perfect rings) by [ČS21, §2.1.1].

Lemma 3.3 ([ČS21, Lem. 2.2.2, Lem. 2.2.3]). Let A be a perfectoid ring with an element
$ ∈ A such that $p | p and that A is $-adically complete, and let A[ be its tilt and $[ ∈ A[
be such that $[] is a unit multiple of $ in A. Then, there exists a $-complete arc cover
A→ A′ such that A′ =

∏
i∈I Vi, where I is an indexing set, and Vi is a $-adically complete

valuation ring over A of rank ≤ 1 with an algebraically closed fraction field for each i ∈ I,
and A[ → A′[ is a $[-complete arc cover.

Lemma 3.4 ([ČS21, Lem. 2.2.4]). Given a collection of valuation rings {Vi}i∈I with alge-
braically closed fraction fields, any étale cover of a quasi-compact open U ⊂ Spec(

∏
i∈I Vi)

has a section, and in particular, any finite étale U -scheme is a finite disjoint union of subsets
T ⊂ U which are both open and closed.

Proposition 3.5 (Beauville–Laszlo). Let R be a ring with an element $ ∈ R such that
R has bounded $-torsion (i.e., there exists an n ≥ 1 such that R〈$∞〉 = R〈$n〉) and S
be a flat, $-henselian R-algbebra with $-adic completion Ŝ. Given a quasi-compact open
Spec(R[ 1

$ ]) ⊂ U ⊂ Spec(R) for which Spec(R[ 1
$ ]× S) is an fpqc cover, and an arc sheaf F

locally of finite presentation on R such that for every R-henselian pair (A, I), the morphism
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F(A)
∼−→ F(A/I) is an isomorphism, we have a cartesian diagram

F(U) F(R[ 1
$ ])

F(Ŝ) F(Ŝ[ 1
$ ]).

(3D)

In particular, the above holds for the functor of idempotents and the functor of finite étale
algebras, and given a torsion étale sheaf G on R, for the functor F = RΓét(−,G).

Proof. By fpqc descent, we have an equivalence

F(U) lim(F(R[ 1
$ ])× F(S) F(S[ 1

$ ])).

Thanks to [BČ20, Thm. 2.1.15], the hypothesis implies that F(S[ 1
$ ]) ∼= F(Ŝ[ 1

$ ]). It remains
to show that there is an equivalence

F(S) lim(F(S[ 1
$ ])× F(Ŝ) F(Ŝ[ 1

$ ])).

The ring S, being flat over R, has bounded $-torsion, consequently, so does Ŝ and, in fact,
Ŝ〈$∞〉 = S〈$∞〉. This implies that Beauville–Laszlo gluing condition is satisfied (S → Ŝ is
a ‘gluable pair’ as in [BM21, Thm. 6.4]), proving the required equivalence.

For the final assertion of the claim, the three functors in question are arc sheaves locally
of finite presentation (Proposition 2.7) and Lemma 2.8 shows that there is an isomorphism
F(A) ∼= F(A/I) for any henselian pair (A, I).

Theorem 3.6. Let A be a perfectoid ring with an element $ ∈ A such that $p | p and
that A is $-adically complete, and let A[ be its tilt and $[ ∈ A[ be such that $[] is a
unit multiple of $ in A. Suppose U ⊂ SpecA (resp. U [ ⊂ SpecA[) is an open containing
Spec(A[ 1

$ ]), (resp. containing Spec(A[[ 1
$[ ]),) such that the closed subsets Z := SpecA \ U

and Z[ := SpecA[ \ U [ agree under the isomorphism induced by (3B). Then there are
compatible equivalences, functorial in A and U and compatible with orthogonality relation on
idempotents,

Idem(U) ∼= Idem(U [), and (3E)

fet /U ∼= fet /U [. (3F)

Moreover, given a commutative, finite étale U-group scheme G, there are a commutative,
finite étale U [-group scheme G[ obtained by (3F) and a functorial in A, U and G equivalence

RΓét(U,G) ∼= RΓét(U
[, G[). (3G)

We note that the inspiration for defining the ‘tilt’ U [ of U comes from the tilting functor
in the adic theory of perfectoid spaces. In [ČS21, Thm. 2.2.7], the authors showed the
equivalence (3E) and (3G), the latter in the case of constant coefficients, that is, by replacing
both G and G[ by an abstract abelian group. The proof given below is an adaptation of the
proof of loc. cit.

Proof of Theorem 3.6. For any scheme X, the commutative, finite étale X-group schemes
are commutative group objects in the category of finite étale X-schemes. Thus, given a
commutative, finite étale U -group scheme G, the identification (3F), functorially in A and
U , identifies G with a commutative, finite étale U [-group scheme.
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Our strategy is to find a suitable open covering of U which has a corresponding open
covering of U [: precisely, we would like each open V in the covering of U to have a
corresponding open V [ (i.e., such that SpecA[ 1

$ ] ⊂ V and SpecA[[ 1
$[ ] ⊂ V [, and SpecA\V

identifies with SpecA[\V [ under (3B)) in the covering of U [; and, therefore, by Zariski descent
of idempotents (resp., of fet, resp., of étale cohomology), we will reduce to producing the
functorial equivalence (3E) (resp., (3F), resp., (3G)) for each of the open V in covering of U .
In fact, it is possible to obtain each open V such that it is covered by SpecA[ 1

$ ] and an open
SpecB ⊂ SpecA, and such that V [ is covered by SpecA[[ 1

$[ ] and an open SpecB′ ⊂ SpecA[

in the following way: covering Z by principal open subsets {SpecA[ 1
f ] ⊂ U}, we can find

elements f [ ∈ A[ (guaranteed by Definition 3.1(2) and (3A)), for each f , such that f [] ≡ f
(mod $), and such that the opens {SpecA[[ 1

f[ ] ⊂ U [} cover Z[. Indeed, fixing one such
cover of Z, for each open SpecA[ 1

f ] in the cover, we may take B = A[ 1
f ] and B′ = A[[ 1

f[ ],
and

V = SpecA[ 1
$ ] ∪ SpecB

V [ = SpecA[[ 1
$[ ] ∪ SpecB′.

and

Henceforth, we asssume that U is the union of SpecA[ 1
$ ] and SpecB (resp., U [ is the

union of SpecA[[ 1
$[ ] and SpecB′) for some open SpecB ⊂ SpecA (resp., SpecB′ ⊂ SpecA[).

Our construction implies that B/$ ∼= B′/$[, and therefore, the $-adic completion B̂ of B,
which is perfectoid thanks to [ČS21, Cor. 2.1.6], has tilt B̂′, the $[-adic completion of B′
(which is also perfectoid thanks to loc. cit.). The Beauville–Laszlo gluing (Proposition 3.5)
applies by using R = A and S = $-henselisation of B (resp., by using R = A[ and S = $[-
henselisation of B′), reducing the task of producing a functorial equivalence (3E) (resp., (3F),
resp., (3G)) to the following two cases, namely, when U = SpecA[ 1

$ ] and U [ = SpecA[[ 1
$[ ]

and when U = SpecA and U [ = SpecA[ (therefore, in particular, implying the case when
U = Spec B̂ and U [ = Spec B̂′). The latter case is easier, because we can use (3B) and
Lemma 2.8 (this is applicable since A and A[ are $ and $[-henselian respectively). In the
case of idempotents, the first case follows from (3A).

To deal with the cases of fet and the étale cohomology, we will need to use the descent
results from §2. Let

A A0 A1 · · ·

be a $-complete arc hypercover supplied by Lemma 3.3 and

A[ A[0 A[1 · · · .

be the tilt $[-complete arc hypercover. By Proposition 2.12, the functor on $-complete
A-algebras taking such an A-algebra Ã to the category of finite étale Ã[ 1

$ ]-algebras (resp.,
to RΓét(Ã[ 1

$ ], G)) satisfies $-complete arc hyperdescent and the functor on $[-complete
A[-algebras taking such an A[-algebra Ã to the category of finite étale Ã[ 1

$[ ]-algebras (resp.,
to RΓét(Ã[ 1

$[ ], G[)) satisfies $[-complete arc hyperdescent. Hence, to show that there is a
functorial equivalence fet /A[ 1

$ ] ∼= fet /A[[ 1
$[ ] (resp., RΓét(A[ 1

$ ], G) ∼= RΓét(A
[[ 1
$[ ], G[)), it

is enough to exhibit functorial equivalences for all i,

fet /Ai[
1
$ ] ∼= fet /A[i [

1
$[ ]

(resp., RΓét(Ai[
1
$ ], G) ∼= RΓét(A

[
i [

1
$[ ], G[)).

Because of the nature of the rings Ai, it is enough to establish functorial equivalences
(3F) and (3G) in the case when R =

∏
i Vi, where Vi are $-adically complete valuation rings

of rank ≤ 1 with algebraically closed fraction fields. By, for example [ČS21, Prop. 2.1.8], Vi
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are perfectoid and by Proposition 3.2, V [i are $[-adically complete valuation rings of rank
≤ 1 with algebraically closed fraction fields; consequently, R is perfectoid with tilt R[ due to
op. cit. Prop. 2.1.11(d). By Lemma 3.4, the finite étale schemes over R[ 1

$ ] (resp., over R[[ 1
$[ ])

correspond to disjoint unions of subsets of SpecR[ 1
$ ] (resp., of SpecR[[ 1

$[ ]) which are both
open and closed, which, by [Sta20, Tag 00EE], correspond to finite collections of idempotents
of R[ 1

$ ] (resp., of R[[ 1
$[ ]); whence, the functorial equivalence (3E) implies (3F). Again, by

Lemma 3.4, the ring R[ 1
$ ] (resp., the ring R[[ 1

$[ ]) has no non-split étale covers, and therefore
RΓét(R[ 1

$ ], G) (resp., RΓét(R
[[ 1
$[ ], G[)) is concentrated in degree 0; thus, the cohomology

RΓét(R[ 1
$ ], G) ∼= H0(R[ 1

$ ], G) (resp., the cohomology RΓét(R
[[ 1
$[ ], G[) ∼= H0(R[[ 1

$[ ], G[))
can be identified with the group of sections R[ 1

$ ] → G (resp., sections R[[ 1
$[ ] → G[).

Consequently, the full faithfulness of the functorial equivalence (3F) implies (3G).

In the above proof, we could have replaced the $-complete arc hyperdescent with the
‘$-complete v’-hyperdescent. Indeed, the proof of [ČS21, Lem. 2.2.3] can be tailored to
produce a ‘$-complete v’-cover in Lemma 3.3. However, it does not save us much work
if we just prove the ‘$ complete v’-hyperdescent for the functors in Proposition 2.7 and
Proposition 2.12.
Remark 3.7. Let R be a perfectoid Banach K-algebra as in [Sch12, Defn. 5.1], where K
is a perfectoid field as in op. cit. Defn. 3.1, (resp., perfectoid Banach Qp-algebra as in
[KL15, Defn. 3.6.1]). Then, the ring R◦ of power-bounded elements is a perfectoid ring
(cf. [BMS18, Lem. 3.20]). Choosing an element $ ∈ R◦ such that $p | p and that R◦ is
$-adically complete, and choosing $[ ∈ R[◦ such that $[] is a unit multiple of $, we have,
by Theorem 3.6, an equivalence

fet /R◦[ 1
$ ] ∼= fet /R[◦[ 1

$[ ].

Corollary 3.8 ([Čes19, Thm. 4.10]). Let A be a Zp-algebra such that it is a perfectoid ring
with an element $ ∈ A such that $p | p and that A is $-adically complete. Then, for a
commutative, finite étale A[ 1

$ ]-group scheme G of p-power order, we have, for all i ≥ 2,

Hi
ét(A[ 1

$ ], G) = 0. (3H)

In particular, for a commutative, finite étale A[ 1
p ]-group scheme G of p-power order, we have,

for all i ≥ 2,
Hi

ét(A[ 1
p ], G) = 0.

Proof. The second vanishing follows from (3H) because there exists a $ ∈ A such that $p is
a unit multiple of p, and A[ 1

$ ] = A[ 1
p ]. Indeed, [BMS18, Lem. 3.9] implies that there exists a

unit v ∈ A such that vp admits compatible p-power roots, consequently, we can take $ ∈ A
such that $p = vp.

Letting $[ ∈ A[ be such that $[] = vp, Theorem 3.6 implies that we have an isomorphism

RΓét(A[ 1
$ ], G) ∼= RΓét(A

[[ 1
$[ ], G[).

It suffices to show the cohomology vanishing of the second complex, which reduces us to prove
(3H) for the perfect Fp-algebra A[. Due to a limit argument, [SGA4 III, Ex. X Thm. 5.1],
which shows that the p-cohomological degree of any noetherian Fp-algebra is ≤ 1, shows that
for all i ≥ 2,

Hi
ét(A

[[ 1
$[ ], G[) = 0.
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